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ABSTRACT.  Sparse storage formats are techniques for storing and 

processing the sparse matrix data efficiently. The performance of 

these storage formats depend upon the distribution of non-zeros, 

within the matrix in different dimensions. In order to have better 

results we need a technique that suits best the organization of data in a 

particular matrix. So the decision of selecting a better technique is the 

main step towards improving the system's results otherwise the 

efficiency can be decreased. The purpose of this research is to help 

identify the best storage format in case of reduced storage size and 

high processing efficiency for a sparse matrix.  

KEYWORDS. Sparse matrices, sparse storage formats, sparse matrix 

vector multiplication 

 

 

 

1 Introduction 

 

Data compression is the main issue these days since data is being 

computerized and the size of data keeps on increasing. So various 

techniques have been devised to reduce the storage size of data in order to 

move and process it efficiently. Sparse storage formats steps to reduce the 

storage size of the data in a way not to lose the important information.  
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Sparse matrices are obtained from large linear systems that mostly consist 

of zeros. When these matrices are stored and processed as dense matrices they 

consume much more resources (memory and processing time). It gives birth to 

the idea of using some special techniques named as sparse storage formats to deal 

with such data. These storage formats are developed by different scientists and 

engineers after experimenting on the data deducted form large circuits, models, 

chemical reactions, linear problems, network traffic etc. 

All of these storage formats followed the same theme of excluding the 

unnecessary zeros from the matrix data in a different way. Some additional 

information is also added to the matrix for preserving the original shape of 

the matrix. The performance of these techniques varies with the distribution 

of non-zeros within matrix. “No storage technique is efficient for all the 

sparse matrices; however, the selection of a suitable one gives better results” 

[DDR00]. 

Towards the goal of improving the efficiency of sparse matrices 

operations, a software has been implemented that suggests to the user which 

storage format suits best a particular matrix data, after it analyzes the matrix 

data. It is a step towards improving the results of an end user of sparse 

storage formats and encouraging more towards the safe and successful use 

of sparse storage formats. 

In section 1 sparse storage formats are introduced and their importance 

is discussed. Section 2 explains sparse storage formats briefly. Selection of 

the most appropriate storage formats is described in section 3. Section 4 

gives sample results of the software. The conclusions and future 

recommendations are in section 5 while section 6 consists of references.  

 

 

2 Sparse Storage Formats 

 

Those sparse storage formats in which the non-zeros are accessed from their 

location in the original matrix are called point entry storage formats. While, those 

storage formats in which the non-zeros are accessed through their blocks are 

called block entry storage formats. The following storage formats have been 

implemented and are considered in technique detection software. They are: 

• Coordinate storage format [DDR00]  

• Compressed column storage format [DDR00] 

• Compressed row storage format [DDR00] 

• Compressed diagonal storage format [DDR00] 

• Jagged diagonal storage format [EM03] 

• Transpose jagged diagonal storage format [EM03] 
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In order to have a better idea of the working of sparse storage formats, 

compressed row storage format is discussed. It also gives ratio of 

compression by comparing the matrix data in the compressed row with the 

dense matrix. 

In compressed row storage format the non-zeros are stored along with 

their column indices and row pointer which points to the first nonzero of 

each row. The conversion of a matrix data from dense to compressed row 

storage format is show in Figure 2.1. 

 

 

                                                 2     1     0    0 

                                                 0     4     3    5 

                          A   =               7     0     6    0 

                                                 0     0     0    8 

 

 

Figure 2.1: Matrix data in Dense and Compressed Row storage format 

Value 2 1 4 3 5 7 6 8 

Col index 1 2 2 3 4 1 3 4 

Row ptr 1 3 6 8 9    

  

The purpose of sparse storage format is to reduce the storage size and 

increase the processing efficiency. The size comparison of different storage 

formats, their computations in matrix-vector multiplication is given below. 

Let’s consider 

Matrix A = M x N 

Vector =N x 1 

NNZ is the total number of non-zeros in the matrix, NZD is the 

number of nonzero diagonals, JD is the jagged diagonal vector, and TJD is 

the transpose jagged diagonal vector while NPR is the number of non-zeros 

per row. The number of non-zeros per row is assumed to be equal for all 

rows. The table 2.1 compares the number of computations of a dense matrix 

to that of the coordinate storage format, which is the simplest of all.  

 

Table 2.1: Computations comparison in matrix-vector multiplication 

Storage format Computations 

Dense M x (2N -1) 

COO NNZ + M(Npr-1) 
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The table 2.2 gives size comparison of dense matrix to that of the 

implemented sparse storage formats. The size comparison of sparse storage 

formats depends upon the size of the constants like NZD, JD, TJD etc. 

However, in case of sparse matrices they all perform better than the dense 

matrix. 

 

Table 2.2: Size comparison of different storage formats 

Storage format Size 

Dense Matrix M x N 

COO 3 x NNZ 

CSR 2 x NNZ + M + 1 

CSC 2 x NNZ + N + 1 

CDS if (M <= N)             NZD + (NZD x M) 

Else                          NZD + (NZD x N)  

JDS ( 2 x NNZ ) + (JD +1) + M  

TJDS ( 2 x NNZ ) + (TJD +1)  

 

 

3 Selection of appropriate storage format for a particular matrix 

 

The above mentioned sparse storage formats were implemented and tested 

with matrices of all possible data distributions. The size of the selected 

matrices is compared in all implemented storage formats. Matrix-vector 

multiplication was applied on them to compare their performance. The 

results obtained leads us to the conclusion that, for each data distribution the 

technique that performs well, can be used for the matrices that have data 

distribution similar to it. A set of rules has been devised to identify the 

category of the matrix data distribution and then to suggest the most 

appropriate storage format. The categories in which we can distribute the 

matrix data are row wise, column wise and diagonal density and 

randomness. A rule to find the randomness in the matrix data is shown in 

Table 3.1. A matrix data is ideally random if all the non-zeros are at equal 

distance from each other in their respective rows and columns. Those non-

zeros that are ideally random are counted to calculate, its percentage by 

comparing with the total number of non-zeros within the matrix. For a 

matrix of nonzero density of 20 percent, the ideal random spacing is 80 

percent between non-zeros.  
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Table 3.1: Percentage of ideally random non-zeros in the matrix 

Randomness Level Percent density in the ideal case 

Very High 75 percent or above 

High 60-75 percent 

Medium 50-60 percent 

Low 40-60 percent 

Very Low 40 percent or below 

 

The rule for suggesting a row or column as dense row or dense column 

is same. If in a row or column there are more non-zeros more than half of its 

length then it is considered as dense row or column. The numbers of non-

zeros in dense rows or dense column are counted. It gives us the percentage 

of non-zeros in dense rows or columns. In order to consider a matrix as 

dense row or dense column matrix depends upon its percentage which 

specifies a category to the matrix as listed in Table 3.2. 

 

Table 3.2: Percentage of non-zeros in dense rows/columns in the matrix 

Density Level Percent density 

Very High 50 percent and above 

High  35 percent to 50 percent  

Medium  25 percent to 35 percent 

Low  15 percent to 25 percent 

Very Low Below 15 percent 

 

Shape of the matrix or its dimensions also affects the efficiency of a 

storage formats. There are three possibilities for the shape of a matrix. It can 

be square, horizontally rectangular or vertically rectangular. The affect of 

shape is also included in consideration while selecting a storage format. 

Since in a matrix there are rows+cols-1 possible diagonals. So if there 

is low density of nonzero diagonals, then it’s obvious that the density of 

non-zeros in the nonzero diagonals will be high. We can also calculate the 

diagonal density from the number of non-zeros within nonzero diagonals. 

But in case of diagonal density we need less number of nonzero diagonals. 

The reason is that if we have even 90% of non-zeros in dense diagonals but 

if the remaining 10% are distributed widely over nonzero diagonals the 

efficiency will decrease. Table 3.3 shows a list of nonzero diagonals of the 

matrix against their density levels. 

 



 

 

 

 

 
Anale. Seria Informatică. Vol. VII fasc. 2 – 2009 
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009 

 

 62 

Table 3.3: Percentage of nonzero diagonals in the matrix 

Density Level Percent density 

 Very High 15 percent or below nonzero 

diagonals 

High  15 percent to 30 percent nonzero 

diagonals 

Medium 30 – 45 percent nonzero diagonals 

Low  45-60 percent nonzero diagonals 

Very Low Above 60 percent nonzero diagonals 

 

When the matrix is analyzed the storage formats is suggested to it, 

according to its density in each of the above discussed categories. The set of 

rules on the basis of which a sparse storage format has been selected after 

analyzing the matrix data for the objective of high processing efficiency is 

shown in Table 3.4:  

 

Table 3.4: Suitable storage formats for data distributions  

to obtain high processing efficiency 

Density Level Category Shape Technique 

Very High Diagonal Density Square/ 

Vertically 

rectangular/ 

Horizontally 

rectangular 

DIA 

Very High Dense Rows Square/ 

Vertically 

rectangular 

CSR 

Very High Dense Columns Square/ 

Vertically 

rectangular 

JDS 

Very High Randomness Square/ 

Vertically 

rectangular/ 

Horizontally 

rectangular 

TJDS 

Very High Dense Rows Horizontally 

rectangular 

TJDS 

Very High  Dense Columns Horizontally 

rectangular 

CSC 
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If the objective is to reduce the storage size of the matrix storage 

formats are listed against different data distributions. Coordinate storage 

format is the only among the implemented storage formats whose storage 

size is not affected by the data distribution within the matrix. Obviously the 

number of non-zeros affects all the storage formats. The set of rules that 

help to suggest the most appropriate storage format in case of reduced 

storage size is shown in Table 3.5: 

 

Table 3.5: Suitable storage formats for different data distributions  

to reduce the storage size 

Density level Category Shape Technique 

Very High Diagonal Density Square/ 

Vertically 

rectangular/ 

Horizontally 

rectangular 

DIA 

Very High Randomness Square/ 

Vertically 

rectangular/ 

Horizontally 

rectangular 

TJDS 

Very High Dense Rows Square/ 

Horizontally 

rectangular 

CSR 

Very High Dense Rows Vertically 

rectangular 

CSC 

Very High  Dense Columns Square/ 

Vertically 

rectangular 

CSC 

Very High Dense Columns Horizontally 

rectangular 

JDS 

 

 

4 Sample results 

 

This section describes sample results when “Technique detection software 

for sparse matrices” was provided with input matrices (Mbeause and lrand). 

In the first portion the matrix data is shown. Then the analysis on the matrix 

data is displayed. While at the end the most appropriate storage format is 



 

 

 

 

 
Anale. Seria Informatică. Vol. VII fasc. 2 – 2009 
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009 

 

 64 

suggested to achieve the goals of reduced size and high efficiency. The 

storage format is suggested among the implemented ones. A sample output 

of the software is provided in Figure 4.1 which shows the matrix data being 

parsed and suggested the best storage format to achieve high processing 

efficiency as well as a sparse storage format to reduce the storage size of the 

matrix to minimum. 

 

 
Figure 4.1: Sample results of technique detection software  

for sparse matrices 

 

 

5 Conclusion and Future Recommendations 

 

The performance of sparse storage format is affected by the number of non-

zeros and the distribution of non-zeros within the matrix. Selection of the 

most appropriate technique improves the processing efficiency and reduces 

storage size. While in some cases we will have to select one at the cost of 

the other depending upon the requirements of the user. 

More sparse storage formats can be implemented and tested on a set of 

matrices having almost all possible data distributions to obtain their areas of 

brilliance. Rules can added for those storage formats in the software, in 

order to provide the end user with more number of options and to have a 

more specific technique for a particular data distribution.  
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