

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 57

TTeecchhnniiqquuee ddeetteeccttiioonn ssooffttwwaarree ffoorr SSppaarrssee MMaattrriicceess

MMuuhhaammmmaadd TTaaiimmoooorr KKhhaann

Pakistan Institute of Engineering and Applied Sciences (PIEAS),

Islamabad, Pakistan

taimoor.muhammad@gmail.com

DDrr.. AAnniillaa UUssmmaann

Pakistan Institute of Engineering and Applied Sciences (PIEAS),

Islamabad, Pakistan

Anila@pieas.edu.pk

ABSTRACT. Sparse storage formats are techniques for storing and

processing the sparse matrix data efficiently. The performance of

these storage formats depend upon the distribution of non-zeros,

within the matrix in different dimensions. In order to have better

results we need a technique that suits best the organization of data in a

particular matrix. So the decision of selecting a better technique is the

main step towards improving the system's results otherwise the

efficiency can be decreased. The purpose of this research is to help

identify the best storage format in case of reduced storage size and

high processing efficiency for a sparse matrix.

KEYWORDS. Sparse matrices, sparse storage formats, sparse matrix

vector multiplication

1 Introduction

Data compression is the main issue these days since data is being

computerized and the size of data keeps on increasing. So various

techniques have been devised to reduce the storage size of data in order to

move and process it efficiently. Sparse storage formats steps to reduce the

storage size of the data in a way not to lose the important information.

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 58

Sparse matrices are obtained from large linear systems that mostly consist

of zeros. When these matrices are stored and processed as dense matrices they

consume much more resources (memory and processing time). It gives birth to

the idea of using some special techniques named as sparse storage formats to deal

with such data. These storage formats are developed by different scientists and

engineers after experimenting on the data deducted form large circuits, models,

chemical reactions, linear problems, network traffic etc.

All of these storage formats followed the same theme of excluding the

unnecessary zeros from the matrix data in a different way. Some additional

information is also added to the matrix for preserving the original shape of

the matrix. The performance of these techniques varies with the distribution

of non-zeros within matrix. “No storage technique is efficient for all the

sparse matrices; however, the selection of a suitable one gives better results”

[DDR00].

Towards the goal of improving the efficiency of sparse matrices

operations, a software has been implemented that suggests to the user which

storage format suits best a particular matrix data, after it analyzes the matrix

data. It is a step towards improving the results of an end user of sparse

storage formats and encouraging more towards the safe and successful use

of sparse storage formats.

In section 1 sparse storage formats are introduced and their importance

is discussed. Section 2 explains sparse storage formats briefly. Selection of

the most appropriate storage formats is described in section 3. Section 4

gives sample results of the software. The conclusions and future

recommendations are in section 5 while section 6 consists of references.

2 Sparse Storage Formats

Those sparse storage formats in which the non-zeros are accessed from their

location in the original matrix are called point entry storage formats. While, those

storage formats in which the non-zeros are accessed through their blocks are

called block entry storage formats. The following storage formats have been

implemented and are considered in technique detection software. They are:

• Coordinate storage format [DDR00]

• Compressed column storage format [DDR00]

• Compressed row storage format [DDR00]

• Compressed diagonal storage format [DDR00]

• Jagged diagonal storage format [EM03]

• Transpose jagged diagonal storage format [EM03]

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 59

In order to have a better idea of the working of sparse storage formats,

compressed row storage format is discussed. It also gives ratio of

compression by comparing the matrix data in the compressed row with the

dense matrix.

In compressed row storage format the non-zeros are stored along with

their column indices and row pointer which points to the first nonzero of

each row. The conversion of a matrix data from dense to compressed row

storage format is show in Figure 2.1.

 2 1 0 0

 0 4 3 5

 A = 7 0 6 0

 0 0 0 8

Figure 2.1: Matrix data in Dense and Compressed Row storage format

Value 2 1 4 3 5 7 6 8

Col index 1 2 2 3 4 1 3 4

Row ptr 1 3 6 8 9

The purpose of sparse storage format is to reduce the storage size and

increase the processing efficiency. The size comparison of different storage

formats, their computations in matrix-vector multiplication is given below.

Let’s consider

Matrix A = M x N

Vector =N x 1

NNZ is the total number of non-zeros in the matrix, NZD is the

number of nonzero diagonals, JD is the jagged diagonal vector, and TJD is

the transpose jagged diagonal vector while NPR is the number of non-zeros

per row. The number of non-zeros per row is assumed to be equal for all

rows. The table 2.1 compares the number of computations of a dense matrix

to that of the coordinate storage format, which is the simplest of all.

Table 2.1: Computations comparison in matrix-vector multiplication

Storage format Computations

Dense M x (2N -1)

COO NNZ + M(Npr-1)

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 60

The table 2.2 gives size comparison of dense matrix to that of the

implemented sparse storage formats. The size comparison of sparse storage

formats depends upon the size of the constants like NZD, JD, TJD etc.

However, in case of sparse matrices they all perform better than the dense

matrix.

Table 2.2: Size comparison of different storage formats

Storage format Size

Dense Matrix M x N

COO 3 x NNZ

CSR 2 x NNZ + M + 1

CSC 2 x NNZ + N + 1

CDS if (M <= N) NZD + (NZD x M)

Else NZD + (NZD x N)

JDS (2 x NNZ) + (JD +1) + M

TJDS (2 x NNZ) + (TJD +1)

3 Selection of appropriate storage format for a particular matrix

The above mentioned sparse storage formats were implemented and tested

with matrices of all possible data distributions. The size of the selected

matrices is compared in all implemented storage formats. Matrix-vector

multiplication was applied on them to compare their performance. The

results obtained leads us to the conclusion that, for each data distribution the

technique that performs well, can be used for the matrices that have data

distribution similar to it. A set of rules has been devised to identify the

category of the matrix data distribution and then to suggest the most

appropriate storage format. The categories in which we can distribute the

matrix data are row wise, column wise and diagonal density and

randomness. A rule to find the randomness in the matrix data is shown in

Table 3.1. A matrix data is ideally random if all the non-zeros are at equal

distance from each other in their respective rows and columns. Those non-

zeros that are ideally random are counted to calculate, its percentage by

comparing with the total number of non-zeros within the matrix. For a

matrix of nonzero density of 20 percent, the ideal random spacing is 80

percent between non-zeros.

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 61

Table 3.1: Percentage of ideally random non-zeros in the matrix

Randomness Level Percent density in the ideal case

Very High 75 percent or above

High 60-75 percent

Medium 50-60 percent

Low 40-60 percent

Very Low 40 percent or below

The rule for suggesting a row or column as dense row or dense column

is same. If in a row or column there are more non-zeros more than half of its

length then it is considered as dense row or column. The numbers of non-

zeros in dense rows or dense column are counted. It gives us the percentage

of non-zeros in dense rows or columns. In order to consider a matrix as

dense row or dense column matrix depends upon its percentage which

specifies a category to the matrix as listed in Table 3.2.

Table 3.2: Percentage of non-zeros in dense rows/columns in the matrix

Density Level Percent density

Very High 50 percent and above

High 35 percent to 50 percent

Medium 25 percent to 35 percent

Low 15 percent to 25 percent

Very Low Below 15 percent

Shape of the matrix or its dimensions also affects the efficiency of a

storage formats. There are three possibilities for the shape of a matrix. It can

be square, horizontally rectangular or vertically rectangular. The affect of

shape is also included in consideration while selecting a storage format.

Since in a matrix there are rows+cols-1 possible diagonals. So if there

is low density of nonzero diagonals, then it’s obvious that the density of

non-zeros in the nonzero diagonals will be high. We can also calculate the

diagonal density from the number of non-zeros within nonzero diagonals.

But in case of diagonal density we need less number of nonzero diagonals.

The reason is that if we have even 90% of non-zeros in dense diagonals but

if the remaining 10% are distributed widely over nonzero diagonals the

efficiency will decrease. Table 3.3 shows a list of nonzero diagonals of the

matrix against their density levels.

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 62

Table 3.3: Percentage of nonzero diagonals in the matrix

Density Level Percent density

 Very High 15 percent or below nonzero

diagonals

High 15 percent to 30 percent nonzero

diagonals

Medium 30 – 45 percent nonzero diagonals

Low 45-60 percent nonzero diagonals

Very Low Above 60 percent nonzero diagonals

When the matrix is analyzed the storage formats is suggested to it,

according to its density in each of the above discussed categories. The set of

rules on the basis of which a sparse storage format has been selected after

analyzing the matrix data for the objective of high processing efficiency is

shown in Table 3.4:

Table 3.4: Suitable storage formats for data distributions

to obtain high processing efficiency

Density Level Category Shape Technique

Very High Diagonal Density Square/

Vertically

rectangular/

Horizontally

rectangular

DIA

Very High Dense Rows Square/

Vertically

rectangular

CSR

Very High Dense Columns Square/

Vertically

rectangular

JDS

Very High Randomness Square/

Vertically

rectangular/

Horizontally

rectangular

TJDS

Very High Dense Rows Horizontally

rectangular

TJDS

Very High Dense Columns Horizontally

rectangular

CSC

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 63

If the objective is to reduce the storage size of the matrix storage

formats are listed against different data distributions. Coordinate storage

format is the only among the implemented storage formats whose storage

size is not affected by the data distribution within the matrix. Obviously the

number of non-zeros affects all the storage formats. The set of rules that

help to suggest the most appropriate storage format in case of reduced

storage size is shown in Table 3.5:

Table 3.5: Suitable storage formats for different data distributions

to reduce the storage size

Density level Category Shape Technique

Very High Diagonal Density Square/

Vertically

rectangular/

Horizontally

rectangular

DIA

Very High Randomness Square/

Vertically

rectangular/

Horizontally

rectangular

TJDS

Very High Dense Rows Square/

Horizontally

rectangular

CSR

Very High Dense Rows Vertically

rectangular

CSC

Very High Dense Columns Square/

Vertically

rectangular

CSC

Very High Dense Columns Horizontally

rectangular

JDS

4 Sample results

This section describes sample results when “Technique detection software

for sparse matrices” was provided with input matrices (Mbeause and lrand).

In the first portion the matrix data is shown. Then the analysis on the matrix

data is displayed. While at the end the most appropriate storage format is

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 64

suggested to achieve the goals of reduced size and high efficiency. The

storage format is suggested among the implemented ones. A sample output

of the software is provided in Figure 4.1 which shows the matrix data being

parsed and suggested the best storage format to achieve high processing

efficiency as well as a sparse storage format to reduce the storage size of the

matrix to minimum.

Figure 4.1: Sample results of technique detection software

for sparse matrices

5 Conclusion and Future Recommendations

The performance of sparse storage format is affected by the number of non-

zeros and the distribution of non-zeros within the matrix. Selection of the

most appropriate technique improves the processing efficiency and reduces

storage size. While in some cases we will have to select one at the cost of

the other depending upon the requirements of the user.

More sparse storage formats can be implemented and tested on a set of

matrices having almost all possible data distributions to obtain their areas of

brilliance. Rules can added for those storage formats in the software, in

order to provide the end user with more number of options and to have a

more specific technique for a particular data distribution.

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 65

Bibliography

[DDR00] Jack Dongarra, James Demmel, Axel Ruhe, “Templates for the

algebraic solutions of eigenvalue problems”, Department of

Computer Science University of Tennessee Knoxville, TN37996

(11-20-2000).

[DHP02] I. S. Duff, M. A. Heroux and R. Pozo, “An Overview of the

Sparse Basic Linear Algebra Subroutines: The New Standard

from the BLAS Technical Forum", ACM Transactions on

Mathematical Software, 28, 239-267 (2002).

[D+05] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R.

Vuduc, R. C Whaley and K. Yelick, “Self adapting linear

algebra algorithms and software”, Proceedings of the IEEE:

Special Issue on Program Generation, Optimization, and

Adaptation, 93(2):293–312, February 2005.

[EM03] Anand Ekambaram and Euripides Montagne, “Informational and

processing letters“, University of Central Florida Orlando, FL

32816,(2003) Pages 87-92.

[Har06] Harwell-boing, “Information Technology Laboratory”,

Mathematical and computational sciences division, US

(February 2006),

URL: http://math.nist.gov/MatrixMarket/index.html

[IYV04] E. J. Im, K. Yelick and R. Vuduc, “Sparsity: Optimization

framework for sparse matrix kernels”, International Journal of

High Performance Computing Applications, 18(1):135–158,

2004.

[PH99] A. Pinar and M. Heath, “Improving performance of sparse

matrix-vector multiplication”, In Proc. Supercomputing, 1999.

[Saa03] Y. Saad, “Iterative Methods for Sparse Linear Systems”, SIAM,

Philadelphia, PA, USA, 2003.

Anale. Seria Informatică. Vol. VII fasc. 2 – 2009
Annals. Computer Science Series. 7th Tome 2nd Fasc. – 2009

 66

[VB05] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data

distribution method for parallel sparse matrix-vector

multiplication”, SIAM Review, 47(1):67–95, 2005.

[WAH06] J. W. Willenbring, A. A. Anda and M. Heroux, “Improving

sparse matrix-vector product kernel performance and

availability”, In Proc. Midwest Instruction and Computing

Symposium, Mt. Pleasant, IA, 2006.

[WL06] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix

computations via data compression”, In ICS ’06: Proceedings of

the 20th annual international conference on Supercomputing,

pages 307–316, New York, NY, USA, 2006. ACM Press.

[W+07] S. Williams, L. Oilker, R. Vuduc, J. Shalf, K. Yelick and J.

Demmel, “Optimization of sparse matrix-vector multiplication

on emerging multicore platforms”, In SC ’07: Proceedings of

the 2007 ACM/IEEE conference on Supercomputing, Reno,

NV, Nov. 2007.

